hellocomputer/notebooks/tasks.ipynb
Guillem Borrell 181bc92884
Some checks failed
ci/woodpecker/push/woodpecker Pipeline failed
Successfully implemented function calling for anyscale
2024-06-17 22:18:18 +02:00

138 lines
2.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from hellocomputer.config import settings\n",
"from langchain_core.utils.function_calling import convert_to_openai_function\n",
"import openai\n",
"from operator import itemgetter"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def add(a: int, b: int) -> int:\n",
" \"\"\"Adds a and b.\"\"\"\n",
" return a + b\n",
"\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiplies a and b.\"\"\"\n",
" return a * b\n",
"\n",
"\n",
"tools = [convert_to_openai_function(t) for t in [add, multiply]]\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"tools_fmt = [\n",
" {\"type\": \"function\",\n",
" \"function\": tools[0]},\n",
" {\"type\": \"function\",\n",
" \"function\": tools[1]}\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"messages = [\n",
" {\"role\": \"system\", \"content\": \"You are helpful assistant.\"},\n",
" {\"role\": \"user\", \"content\": \"What is 2 + 2?\"},\n",
"]\n",
"\n",
"client = openai.OpenAI(\n",
" base_url = \"https://api.endpoints.anyscale.com/v1\",\n",
" api_key = settings.anyscale_api_key\n",
")\n",
"\n",
"response = client.chat.completions.create(\n",
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
" messages=messages,\n",
" tools=tools_fmt,\n",
" tool_choice=\"auto\", # auto is default, but we'll be explicit\n",
")\n",
"\n",
"get_args = itemgetter(\"arguments\")\n"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"call = response.choices[0].message.tool_calls[0].function"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"add.func(2,3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}